
 85 

7. ELLIPSES 
 

§7.1. The Equation of an Ellipse 
 An ellipse is the locus (set) of all points P such that 

the distance of P from a fixed point F, called a focus, and 

the perpendicular distance of P from a fixed line, called a 

directrix, satisfies the equation PF = ePM, where M is the 

foot of the perpendicular from P to the directrix and where 

e is a fixed real number with 0 < e < 1. 

 Let a focus be (f, 0) and let the directrix be x = d. If 

P(x, y) lies on the ellipse: 

(x − f)2 + y2 = e2(d − x)2. 

Hence x2 − 2xf + f 2 + y2 = e2d2 − 2e2xd + e2x2 

 x2(1 − e2) + y2 − 2x(f − e2d) = e2d2 − f 2. 

If we position the y-axis so that f = e2d then the equation 

simplifies to x2(1 − e2) + y2 = e2d2(1 − e2). 

It cuts the x-axis when x =  ed. 
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Let a = ed and b2 = a2(1 − e2). Then f = ae and d = 
a

e
 . 

Then the equation becomes 
x2

a2 + 
y2

b2  = 1. 

This is symmetric about both the x- and y- axes and so 

there will be another focus and another directrix on the 

left of the y-axis. 

The foci are at ( ae, 0) and the directrices are x =  
a

e
 . 

The ellipse cuts the axes at ( a, 0) and (0,  b). 

 

 The line segment from (− a, 0) to (a, 0) is called the 

major axis and the line segment form (0, − b) to (a, b) is 

called the minor axis. 

 

Theorem 1: Let F1 and F2 be the foci of an ellipse and let 

P lie on the ellipse. Then PF1 + PF2 is the length of the 

major axis. 

Proof: Let the ellipse be 
x2

a2 + 
y2

b2  = 1 and let e be the 

eccentricity. The foci are F1(ae, 0) and F2(− ae, 0). 

The directrices are x = 
a

e
  and x = − 

a

e
 . 

Let P lie on the ellipse and let M1 and M2 be the foot of 

the perpendiculars to x = 
a

e
  and x = − 

a

e
  respectively. 

 

PF1 + PF2 = e(PM1 + PM2) = e
2a

e
 = 2a. 
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§7.2. Tangents to an Ellipse 
 The simplest way to obtain the equation of the 

tangents to an ellipse is to take it as the limit of a chord. 

This is sort of pre-calculus. If we were explaining this to 

our disembodied angel we wouldn’t have to embark on a 

full-blown explanation of calculus. But we would have 

had to explain limits in discussing power series. 

 

Theorem 2: The equation of the tangent to the ellipse 
x2

a2  +  
y2

b2  = 1 

at P(x0, y0) is 
xx0

a2  + 
yy0

b2   = 1. 

Proof: Let Q(x1, y1) be another point on the conic, where 

x1  x0. We might be tempted to say that x1 is close to x0, 

because we are going to take the limit as x1→x0, though 

this is not really necessary. Although we want it to be 

close enough to x0 so that certain denominators are non-

zero. 

 Since P and Q both lie on the conic, 
x0

2

a2   +  
y0

2

b2   = 1 and 

                                
x1

2

a2   +  
y1

2

b2   = 1. 

Subtracting we get: 
x0

2 − x1
2

a2  + 
y0

2 − y1
2

b2  = 0. 

Hence (x0 − x1)






x0 + x1

a2   + (y0 − y1) 






y0 + y1

b2   = 0. 
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 
y0 − y1

x0 − x1
  = − 

(x0 + x1)b
2

(y0 + y1)a
2 . 

Hence the equation of the chord PQ is 

y − y0 = = − 






(x0 + x1)b

2

(y0 + y1)a
2  (x − x0). 

That is, (y − y0)(y0 + y1)a
2 + (x − x0)(x0 + x1)b

2 = 0. 

This can be simplified to a2yy0 + b2xx0 = y0
2a2 + x0

2b2 

                                                               = a2b2 since P lies 

on the ellipse. Dividing by a2b2 we get the result. 

Theorem 3: If y = mx + c is tangent to the ellipse 
x2

a2  +  
y2

b2  = 1, 

then c =  a m2 + b2 . 

Proof: The equation of the ellipse can be written as 

b2x2 + a2y2 = a2b2. 

The line meets the ellipse where 

b2x2 + a2(mx + c)2 − a2b2, that is when 

(b2 + a2m2)x2 + 2a2mcx + a2(c2 − b2) = 0. 

Since this has only one solution: 

a4m2c2 = (b2 + a2m2)a2(c2 − b2) 

            = a2b2c2 + a4m2c2 − a2b4 − a4b2m2. 

Hence b2c2 = b2(b2 + a2m2). 

 c2 = b2 + a2m2. 

 c =  a2m2 + b2  

Corollary: If the line x cos  + y sin  = p is tangent to 

the ellipse 
x2

a2  +  
y2

b2  = 1, then p2 = a2 cos2 + b2sin2. 

Proof: If sin  = 0 this is easily checked. 
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Suppose that sin   0. 

The equation of the line can be written as y = mx + c where 

m = − 
cos 

sin 
  and c = 

p

sin 
 . 

Hence 
p2

sin2
  = a2







cos2

sin2
 + b2   and so 

p2 = a2cos2 + b2sin2. 

 

Theorem 4: The equation of the chord of contact of the 

tangents from P(x0, y0) to the ellipse 
x2

a2  +  
y2

b2  = 1 is 

xx0

a2  + 
yy0

b2  = 1. 

Proof: Let the points of contact be Q(x1, y1) and R(x2, y2). 

Then the tangents at Q, R are respectively: 

 
xx1

a2  + 
yy1

b2  = 1 and 
xx2

a2  + 
yy2

b2  = 1. 

Suppose these intersect at T(x0, y0). Then 
x0x1

a2  + 
y0y1

b2  = 1 and 
x0x2

a2  + 
y0y2

b2  = 1. 

Hence both Q and R lie on the line 
x0x

a2  + 
y0y

b2  = 1 and so 

this the equation of the chord QR. 

 

Theorem 4: The locus of the points of intersection of 

perpendicular tangents to the ellipse 
x2

a2  +  
y2

b2  = 1 is the 

circle x2 + y2 = a2 + b2. 

Proof:  
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 A typical line has equation x cos  + y sin  = p and 

if this is tangent to the ellipse then p2 = a2cos2 + b2sin2. 

A line perpendicular to this has equation 

− x sin  + y cos  = q, for some q. 

If this is tangent to the ellipse then q2 = a2sin2 + b2cos2. 

Hence, if (x, y) is the point of intersection of these 

tangents then: 

                       x cos  + y sin  = p and 

                    − x sin  + y cos  = q where 

                      p2 = a2cos2 + b2sin2 and 

                      q2 = a2sin2 + b2cos2. 

Squaring and adding the first two equations we get 

x2 + y2 = p2 + q2 = a2 + b2. 

 

§7.3. Parameters 
 For all  the point P(a cos, b sin) lies on the 

ellipse 
x2

a2  + 
y2

b2  = 1. 
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So (a cos , b sin ) represents a typical point on the 

ellipse. As  moves from 0 to 360, P moves anti-

clockwise around the ellipse, starting at (a, 0). The angle 

 is called the eccentric angle of P. 

 The auxiliary circle for this ellipse is the circle 

x2 + y2 = a2. 
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